Improving Bayesian Learning Using Public Knowledge

نویسندگان

  • Farid Seifi
  • Chris Drummond
  • Nathalie Japkowicz
  • Stan Matwin
چکیده

Both intensional and extensional background knowledge have previously been used in inductive problems to complement the training set used for a task. In this research, we propose to explore the usefulness, for inductive learning, of a new kind of intensional background knowledge: the inter-relationships or conditional probability distributions between subsets of attributes. Such information could be mined from publicly available knowledge sources but including only some of the attributes involved in the inductive task at hand. The purpose of our work is to show how this information can be useful in inductive tasks, and under what circumstances. We will consider injection of background knowledge into Bayesian Networks and explore its effectiveness on training sets of different sizes. We show that this additional knowledge not only improves the estimate of classification accuracy it also reduces the variance in the accuracy of the model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه تطبیقی قابلیت های یادگیری سازمانی از دیدگاه پرستاران به عنوان منبع دانش سازمانی بین بیمارستان های دولتی و خصوصی تهران

  Background and Aim: Hospitals are among the most interactive organizations in which the rate of knowledge transfer and learning is considerably high. Comparison of the level of organizational learning between public and private hospitals can be useful for managers to select organizational learning strategies aiming at improving service delivery and organizational behavior.   Material and Meth...

متن کامل

A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis

Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...

متن کامل

A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis

Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...

متن کامل

بهبود یادگیری رفتار روبات سیار دارای خطا در سنسورهای آن با استفاده از شبکه بیزین

In this paper a new structure based on Bayesian networks is presented to improve mobile robot behavior, in which there exist faulty robot sensors. If a robot likes to follow certain behavior in the environment to reach its goal, it must be capable of making inference and mapping based on prior knowledge and also should be capable of understanding its reactions on the environment over time. Old ...

متن کامل

Analysis of a Method Improving Reinforcement Learning Agents' Policies

Reinforcement learning (RL) is a kind of machine learning. It aims to optimize agents’ policies by adapting the agents to an environment according to rewards. In this paper, we propose a method for improving policies by using stochastic knowledge, in which reinforcement learning agents obtain. We use a Bayesian Network (BN), which is a stochastic model, as knowledge of an agent. Its structure i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010